光合作用暗反应怎样产生水?
一、光合作用暗反应怎样产生水?
光合作用全式
12H2O + 6CO2 + 光 → C6H12O6 (葡萄糖) + 6O2↑+ 6H2O
上式中等号两边的水不能抵消,虽然在化学上式子显得很特别。原因是左边的水,是植物吸收所得,而且用于制造氧气和提供电子和氢离子。而右边的水分子的氧原子则是来自二氧化碳。为了更清楚地表达这一原料产物起始过程,人们更习惯在等号左右两边都下写上水分子,或者在右边的水分子右上角打上星号。
光合作用的产物中有糖,我们一般把这个糖理解为淀粉,那么淀粉是一种多糖,而多糖由单糖转化而来,单糖聚合成多糖时要脱水,就像氨基酸形成蛋白质要脱水缩合一样
在叶绿体的基质中存在着一些五碳化合物,C02可以通过气孔进入叶肉细胞到达基质。一分子的五碳化合物和一分子的C02结合生成了2个分子的三碳化合物,这个过程我们称之为C02的固定。 这是暗反应的第一个物质变化。一部分的三碳化合物在ATP和多种酶的作用下,被NADPH还原,经过一系列变化形成糖类(主要是蔗糖和淀粉)。另外,还可以生成H20。
3-磷酸甘油酸重排生成2-磷酸甘油酸。磷酸甘油酸变位酶。 2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸PEP。于是乎生成水。
二、植物光合作用化学反应式
6 CO2+6 H2O=C6H12O6+6 O2 反应物中没有单质,生成物中单质是氧气, 氧化物是葡萄糖 其实这个放映是分三个步骤的:在植物体内,首先是二氧化碳被五碳化合物吸收,反应生成三碳化合物;其次,水在叶绿体表层薄膜在光照条件下,生成氧气和游离氢;三碳化合物与游离氢反应生成葡萄糖.葡萄糖进一步会转化为植物体内的其他多糖.(学到生物就会明白的)
三、什么是花程式?
(一)花程式
花程式是借用符号及数字组成一定的程式来表明花的各部分的组成、排列、位置以及它们彼此的关系(见施浒编的《种子植物形态学辞典》)。以上是花程式的基本概念,是借助于字母、数字和符号来表达、怎么表达法?我们分别来谈:(详见图表)
1.字母 一般用每轮花的名称的第一个字母来表示花的各个组成部分。通常用拉丁文,如:用P代表花被(P为Perianthium的略写),C或Co代表花冠(C或Co为Corolla的略写),Ca代表花萼(Ca为Calyx的略写),A代表雄蕊群(A为Androecium的略写),G代表雌蕊群(G为Gynoecium的略写)。而在我国植物学教科书中,常用K表示花萼,该字母是德文Kelch的略写。当用K表示花萼时,则要用Co来表示花冠。
2.数字 用阿拉伯数字“0,1,2,3,……10”以及“∞”或“x”来表示,“∞”表示多数,不定数;“x”则表示少数,不定数;通常写在花部各轮每一字母的右下角或右上角,表示其实际数目。
3.符号 整齐花或辐射对称花用“*”或“”表示,不整齐花或两侧对称花用“↑”或“”号来表示;“”表示雄花,“”表示雌花,“”或“”表示两性花;如果表示花的某一部分互相连合,则在其数字外加上“( )”号,仅基部连合可在数字下方加上“”号,如上部连合,可在数字之外加“”号。如果花部的某些部分贴生则用“”号表示;子房的位置通常在G的上、下用“—”号表示,如上位子房则写成(也可以仅写G来表示),下位子房则写成,周位或半下位子房写成;如果同一花部有多轮或同一轮中有几种不同的联合和分离的类型,则用符号“+”来连接;而同一花部的数目之间存在变化幅度则用“—”号来连接;如果在字母的右下角的数字后加上“∶”号的话,是表示心皮数、室数和胚珠数间的一种连接。如:豌豆的雌蕊群,我们写成1∶1∶∞(即上位子房,一心皮、一室、胚珠多数)。各花部之间则用“,”号来分开。但在比较老的一些植物分类学书籍中,如胡先骕和郑勉二位先生的著作中,可见到用S来表示雄蕊、P来表示雌蕊的表示法,其花程式的写法也与现行写法不一样,如
蕊成二组,九个以其花丝联合。
四、光合作用的过程发生在()
C
光合作用可分为光反应和暗反应(又叫碳反应)两个阶段。
2.1 光反应
条件:光照、光合色素、光反应酶。
场所:叶绿体的类囊体薄膜。
过程:①水的光解:2H2O→4[H]+O2↑(在光和叶绿体中的色素的催化下)。②ATP的合成:ADP+Pi→ATP(在光、酶和叶绿体中的色素的催化下)。
影响因素:光照强度、CO2浓度、水分供给、温度、酸碱度等。
意义:①光解水,产生氧气。②将光能转变成化学能,产生ATP,为暗反应提供能量。③利用水光解的产物氢离子,合成NADPH,为暗反应提供还原剂NADPH。
2.2 暗反应
暗反应的实质是一系列的酶促反应。
条件:暗反应酶。
场所:叶绿体基质。
影响因素:温度、CO2浓度、酸碱度等。
过程:不同的植物,暗反应的过程不一样,而且叶片的解剖结构也不相同。这是植物对环境的适应的结果。暗反应可分为C3、C4和CAM三种类型。三种类型是因二氧化碳的固定这一过程的不同而划分的。对于最常见的C3的反应类型,植物通过气孔将CO2由外界吸入细胞内,通过自由扩散进入叶绿体。叶绿体中含有C5。起到将CO2固定成为C3的作用。C3再与NADPH及ATP提供的能量反应,生成糖类(CH2O)并还原出C5。被还原出的C5继续参与暗反应。
光合作用的实质是把CO2和H2O转变为有机物(物质变化)和把光能转变成ATP中活跃的化学能再转变成有机物中的稳定的化学能(能量变化)。